MATH1520 University Mathematics for Applications

Chapter 2: Limits

Learning Objectives:

- (1) Examine the limit concept and general properties of limits.
- (2) Compute limits using a variety of techniques.
- (3) Compute and use one-sided limits.
- (4) Investigate limits involving infinity and "e".

Limit of a function at one point 2.1

(Heuristic) "Definition" 2.1.1. If $f(\underline{x})$ gets "closer and closer" to a number L as x gets "closer and closer" to c from both sides, then L is called the limit of f(x) as x approaches c, denoted by

Remark. Limits are defined rigorously via " $\varepsilon - \delta$ " language.

Example 2.1.1. Let f(x) := x + 1. Find $\lim_{x \to 1} f(x)$

x	0.9	0.99	0.999	1	1.001	101	1.1
$\int f(x)$	1.9	1.99	1.999	\bigcirc	2.001	2.01	2.1

When x approaches 1 from both sides, f(x) approaches 2. Therefore $\lim_{x \to 1} f(x) = 2$.

$$f(c) = f(x) \quad \text{only when } f \text{ is "good"}$$

Remark. 1. The table only gives you an intuitive idea, this is not a rigorous proof. 2. Don't think that the limit is always obtained by substituting x = 1 into f(x). The limit only depends on the behavior of f(x) near x = 1, but not at x = 1.

Example 2.1.2.
$$f(x) = \begin{cases} x+1 & \text{if } x \neq 1, \\ \text{undefined} & \text{if } x = 1. \end{cases}$$

				x -> 1				
x	0.9	0.99	0.999	1	1.001	1.01	1.1	
f(x)	1.9	1.99	1.999	undefined	2.001	2.01	2.1	

When x approaches 1 from both sides, f(x) approaches 2. Therefore $\lim_{x \to 1} f(x) = 2$.

Disregard the value of f at 1, the limit of f(x) when x tends to 1 is always 2.

x	0.9	0.99	0.999	1	1.001	1.01	1.1
f(x)	1.9	1.99	1.999	1	2.001	2.01	2.1

When x approaches 1 from both sides, f(x) approaches 2. Therefore $\lim_{x \to 1} f(x) = 2$.

Proposition 1.

1. If f(x) = k is a constant function, then

$$\lim_{x \to c} f(x) = \lim_{x \to c} k = k.$$

For instance,
$$\lim_{x \to 1} 9 = 9$$
. $= \lim_{x \to 0} 9 = 9$
2. If $f(x) = x$, then
For instance, $\lim_{x \to 3} x = 3$.
 $\lim_{x \to c} f(x) = \lim_{x \to c} x = c$.

$$\frac{\sin x = 3}{2}$$
 Lin X

Proposition 2. (Algebraic properties of limits, $+, -, \times, \div$)

If $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ both exist (important!), then

1. $\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$ 2. $\lim_{x \to c} (f(x) - g(x)) = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)$ 3. $\lim_{x \to c} (f(x)g(x)) = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$ Especially, $\lim_{x \to c} kf(x) = k \lim_{x \to c} f(x)$ for any const 4. $\lim_{x \to c} \underbrace{\frac{f(x)}{g(x)}}_{x \to c} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} \qquad \text{if } \lim_{x \to c} g(x) \neq 0.$ $\lim_{x \to c} (\underline{f(x)})^p = \left[\lim_{x \to c} f(x)\right]^p \quad \text{if } \left[\lim_{x \to c} f(x)\right]^p \text{ exists}$ 5.

$$\lim_{x \to C} (k f^{(x)}) = (\lim_{x \to c} k) \cdot (\lim_{x \to c} f^{(x)})$$

$$\lim_{x \to c} k \lim_{x \to c} f^{(x)}$$

Example 2.1.4. Compute the following limits:

Example 2.1.4. Compute the following limits:
1.
$$\lim_{x \to 1} (x^3 + 2x - 5)$$

 7^2 . $\lim_{x \to 2} \frac{x^4 + x^2 - 1}{x^2 + 5}$
3. $\lim_{x \to -2} \sqrt{4x^2 - 3}$
 $\lim_{x \to -2} \sqrt{4x^2 - 3}$
 $\lim_{x \to -2} \sqrt{4x^2 - 3}$

Solutio

Remark. Generalizing the arguments for the first example above: the limit of any polynomial function P(x), ŝ .

 $\lim_{x \to c}$

$$P(x) = P(c).$$

 $x - 1$ undefined when $x = 1$

Exercise 2.1.1. Compute the following limits:

$$\lim_{x \to 1} \frac{1}{x - 1}; \qquad \lim_{x \to 1} \left(x^2 - \frac{3x}{x + 5} \right)$$

Example 2.1.5. (Cancelling a common factor) Find the limit:

$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - 3x + 2}$$
, adding when $x = 1$.
defined when x is close $t = 1$,
but $t = 1$

Solution. We can't directly use property of division of limit because the denominator $\lim_{x \to 1} (x^2 - x^2)$ $3x + 2) = 1^2 - 3 \times 1 + 2 = 0.$

$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - 3x + 2} = \lim_{x \to 1} \frac{\sqrt[4]{(x - 1)(x + 1)}}{(x - 1)(x - 2)}$$
$$= \lim_{x \to 1} \frac{(x - 1)(x + 1)}{(x - 1)(x - 2)}$$
$$= \lim_{x \to 1} \frac{x + 1}{x - 2} = \underbrace{\lim_{x \to 1} \frac{x + 1}{x - 2}}_{\text{Lim}} = \underbrace{\frac{2}{x - 1}}_{\text{Lim}} = -2$$

Example 2.1.6. Compute

$$\lim_{x \to 1} \frac{x^3 - 5x + 4}{x^2 + 2x - 3}$$
 is not defined when $x = 1$

Solution. Write $p(x) = x^3 - 5x + 4$ and $q(x) = x^2 + 2x - 3$. Because p(1) = q(1) = 0, x - 1is a factor of p(x) and q(x). We obtain

$$p(x) = (x-1)(x^2 + x - 4)$$
 and $q(x) = (x-1)(x+3)$.

Then

$$\lim_{x \to 1} \frac{x^3 - 5x + 4}{x^2 + 2x - 3} = \lim_{x \to 1} \frac{(x - 1)(x^2 + x - 4)}{(x - 1)(x + 3)}$$
$$= \lim_{x \to 1} \frac{x^2 + x - 4}{x + 3}$$
$$= \frac{1^2 + 1 - 4}{1 + 3} = -\frac{1}{2}.$$

Example 2.1.7. (Rationalization)
Let
$$f: [0, \infty) \setminus \{1\} \to \mathbb{R}$$
 defined by $f(x) = \sqrt{x-1}$ Find $\lim_{x \to 1} f(x)$.
Solution. For $x \neq 1$.
 $\sqrt{x-1} = \sqrt{x-1}$ $\sqrt{x+1} = \frac{x-1}{(x-1)}$ $\sqrt{x+1} = \frac{1}{\sqrt{x+1}}$.
Hence
 $\lim_{x \to 1} \frac{\sqrt{x}-1}{x-1} = \lim_{x \to 1} \frac{1}{\sqrt{x}+1} = \frac{1}{2}$.
Example 2.1.8. (Rationalization and Cancellation)
Find
 $\lim_{x \to 1} \frac{\sqrt{x}-1}{x^2-1}$.
Example 2.1.8. (Rationalization and Cancellation)
Find
 $\lim_{x \to 1} \frac{\sqrt{x}-1}{x^2-1}$.
Solution

Solution.

$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x^2 - 1} = \lim_{x \to 1} \frac{(\sqrt{x} - 1)(\sqrt{x} + 1)}{(x + 1)(x - 1)(\sqrt{x} + 1)}$$

$$= \lim_{x \to 1} \frac{1}{(x + 1)(x - 1)(\sqrt{x} + 1)}$$

$$= \lim_{x \to 1} \frac{1}{(x + 1)(\sqrt{x} + 1)} = \frac{1}{4}.$$

x2+2x-3=0 when x=1

Chapter 2: Limits

Challenge Question: Let $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$ defined by $f(x) = \underbrace{\begin{pmatrix} \sqrt[3]{x} - 1 \end{pmatrix}}_{x-1} \cdot \underbrace{\begin{pmatrix} \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1 \end{pmatrix}}_{x-1} = \underbrace{\begin{pmatrix} x \\ \sqrt[3]{x} + \sqrt[3]{x} + 1$

2-6

Proposition 3 (Composite functions/change of variables). If $\lim_{x\to c} g(x) = k$ exists and $\lim_{u\to k} f(u)$ exists, then $\lim_{x\to c} f \circ g(x) = \lim_{u\to k} f(u)$.

Example 2.1.9. Redo the last three examples using change of variables.

$$E_{3}, \lim_{x \to 1} \frac{J\overline{x} - I}{x - 1} \qquad |et u = J\overline{x} \quad when x > 0$$

$$= \lim_{u \to 1} \frac{u - I}{u^{2} - 1} \qquad \sum_{x \to 1} \lim_{x \to 1} J\overline{x} = J\overline{1} = I$$

$$= \lim_{u \to 1} \frac{(u - x)}{(u - x)(u + 1)}$$

$$= \lim_{u \to 1} \frac{I}{(u + 1)} = \frac{1}{2}$$

$$\lim_{u \to 1} \frac{J\overline{x} - I}{u + 1} = I \quad \text{that : Let } u = \frac{1}{2} \overline{x}$$

$$E_{3}, \lim_{x \to 1} \frac{J\overline{x} - I}{x - 1} = I \quad \text{that : Let } u = \frac{1}{2} \overline{x}$$

2.2 One-sided Limits

The following shows the graph of a piecewise function f(x):

As x approaches 2 from the right, f(x) approaches 5 and we write

$$\lim_{x \to 2^+} f(x) = 5. \quad \bigstar \quad \underset{x \to 2^-}{\bigstar} \quad \underset{x \to 2^-}{\bigstar}$$

On the other hand, as x approaches 2 from the left, f(x) approaches -3 and we write

$$\lim_{x \to 2^{-}} f(x) = -3.$$

Limits of these forms are called <u>one-sided limits</u>. The limit is a <u>right-hand limit</u> if the approach is from the right. From the left, it is a <u>left-hand limit</u>.

Definition 2.2.1. If f(x) approaches *L* as *x* tends towards *c* from the left (x < c), we write $\lim_{x\to c^-} f(x) = L$. It is called the **left-hand limit** of f(x) at *c*. If f(x) approaches *L* as *x* tends towards *c* from the right (x > c), we write $\lim_{x\to c^+} f(x) = L$. It is called the **right-hand limit** of f(x) at *c*.

Example 2.2.1. Recall

For this case
$$\lim_{x\to 0^+} |x| = \lim_{x\to 0^-} |x|$$
. Then $\lim_{x\to 0} |x| = 0$.

Example 2.2.2. Define $f : \mathbf{R} \to \mathbf{R}$,

and

We have

$$\lim_{x \to 0^-} f(x) = 0.$$

Remark.

- 1. The left hand limit or the right hand limit may not be the same.
- 2. Does $\lim_{x\to 0} f(x)$ exist? No!

Proposition 4.

 $\lim_{x \to c} f(x) = L \text{ if and only if } \lim_{x \to c^-} f(x) = L \text{ and } \lim_{x \to c^+} f(x) = L.$

(i.e., both left hand limit and right hand limit exist and is equal to L)

Example 2.2.3. Suppose the function

$$f(x) = \begin{cases} x^2 + 1, & x \ge 1, \\ a, & x < 1. \end{cases}$$

has a limit as x approaches 1. Find the value of a and $\lim_{x\to 1} f(x)$.

Solution. Since $\lim_{x \to 1^{+}} f(x)$ exists, we have $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} f(x).$ And $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (x^{2} + 1) = 2, \quad \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (a) = a.$ So, a = 2, and $\lim_{x \to 1} f(x) = 2$.

2.3 Infinite "Limits"

Consider the following limit

$$\lim_{x \to 2} \frac{1}{(x-2)^2}$$

As *x* approaches 2, the denominator of the function $f(x) = \frac{1}{(x-2)^2}$ approaches 0 and hence the value of f(x) becomes very large.

The function f(x) increases without bound as $x \to 2$ both from left and from right. In this case, the limit *DNE (does not exist)* at x = 2, but we express the asymptotic behaviour

of *f* near 2 symbolically as

$$\lim_{x \to 2} \frac{1}{(x-2)^2} = +\infty.$$

Remark. $+\infty$ is just a symbol, not a real number.

Example 2.3.1.

$$\lim_{x \to 0} \left(\frac{-1}{x^2} \right) = -\infty.$$

Definition 2.3.1. We say that $\lim_{x\to c} f(x)$ is an infinite limit if f(x) increases or decreases without bound as $x \to c$.

If f(x) increases without bound as $x \to c$, we write

$$\lim_{x \to c} f(x) = +\infty.$$

If f(x) decreases without bound as $x \to c,$ then

$$\lim_{x \to c} f(x) = -\infty.$$

Example 2.3.2. Evaluate

$$\lim_{x \to 2^+} \frac{x-3}{x^2-4} \text{ and } \lim_{x \to 2^-} \frac{x-3}{x^2-4}.$$

Solution.

$$\lim_{x \to 2^+} \frac{x-3}{x^2-4} = \lim_{x \to 2^+} \frac{x-3}{(x-2)(x+2)} = -\infty$$

since as $x \to 2^+$, we have $x^2 - 4 = (x - 2)(x + 2) \to 0^+$ and $x - 3 \to -1^+$.

$$\lim_{x \to 2^{-}} \frac{x-3}{x^2-4} = \lim_{x \to 2^{-}} \frac{x-3}{(x-2)(x+2)} = +\infty$$

since as $x \to 2^-$, we have $x^2 - 4 = (x - 2)(x + 2) \to 0^-$ and $x - 3 \to -1^-$.

Exercise 2.3.1. Find

$$\lim_{x \to \pi/2} \tan x; \qquad \lim_{x \to \pi/2^-} \tan x; \qquad \lim_{x \to \pi/2^+} \tan x; \qquad \lim_{x \to 0^+} \ln x$$

2 - 10

$$y = -\frac{1}{x^2}.$$